trier par
Copyright © 2020 ABES / OCLCListe des résultats | Notice détaillée | Où trouver ce document ?  
rechercher (et) (Mots du titre) A collection of mathematical problems | 32 résultat(s)


Affiner la recherche

Mot Type Compte
of Mots du titre [4724661]
a Mots du titre [3211154]
collection Mots du titre [149789]
problems Mots du titre [35390]
mathematical Mots du titre [16255]
premierprécédent | 1 | 2 | 3 | 4 | suivantdernier

Ressources électroniques 1.
Benjamini, Itai / 1st ed. 2011. / 2011Résumé
Ressources électroniques 2.
1st ed. 2016. / 2016Résumé
Ressources électroniques 3.
Springer Berlin Heidelberg : Springer e-books / 2006Résumé
Ressources électroniques 4.
Sobh, Tarek / 2010Résumé
Ressources électroniques 5.
Ressources électroniques 6.
1st ed. 2018. / 2018Résumé
Ressources électroniques 7.
Friberg, Jöran (1934-....) / Springer New York : Springer e-books / 2007Résumé
Ressources électroniques 8.
Geometry made easy [Ressource électronique] : or, a new and methodical explanation of the elements of geometry. Containing, I. A very easy and concise Commentary on the first Six, XI, XII, XIII, XIV, and XV Books of Euclid, and the most material Propositions of Archimedes, concerning the Circle, and its Quadrature, the Cylinder, Cone, and Sphere. II. A compendious Treatise of Algebra, with its Application in the Solution of several curious and useful Geometrical Problems. III. A Collection of Recreative Problems, proposed for the Learner's Diversion, being chiefly extracted from Ozanam's Mathematical Recreations. IV. An Introduction to Conic Sections, containing a familiar Explanation of the most principal Properties of the Ellipsis, Parabola, Hyperbola, &c. To which is added, an entire new, curious and exact method of exhibiting in miniature, the various kinds of solids, Regular and Irregular, and also their Sections; each being distinctly and exactly shewn as they really are in their natural state, by schemes cut out of paste-board: by which means the Doctrine of Solids will be much easier comprehended than by any other Method yet Published. By John Lodge Cowley, Late Master of the Academy in St. Martin's-Lane. Recommended and approved by several very eminent Mathematicians, as the most proper Book on this Subject, for the Use of Mathematical Schools, and such as would learn the Principles of this Science by their own Application only
Cowley, John Lodge (1719-1797) / Cengage Gale / 2009
Ressources électroniques 9.
Thacker, Anthony (d. 1744) / Cengage Gale / 2009
Ressources électroniques 10.
Dary, Michael / UMI / d1999-